1,747 research outputs found

    PTHGRN: unraveling post-translational hierarchical gene regulatory networks using PPI, ChIP-seq and gene expression data

    Get PDF
    Interactions among transcriptional factors (TFs), cofactors and other proteins or enzymes can affect transcriptional regulatory capabilities of eukaryotic organisms. Post-translational modifications (PTMs) cooperate with TFs and epigenetic alterations to constitute a hierarchical complexity in transcriptional gene regulation. While clearly implicated in biological processes, our understanding of these complex regulatory mechanisms is still limited and incomplete. Various online software have been proposed for uncovering transcriptional and epigenetic regulatory networks, however, there is a lack of effective web-based software capable of constructing underlying interactive organizations between post-translational and transcriptional regulatory components. Here, we present an open web server, post-translational hierarchical gene regulatory network (PTHGRN) to unravel relationships among PTMs, TFs, epigenetic modifications and gene expression. PTHGRN utilizes a graphical Gaussian model with partial least squares regression-based methodology, and is able to integrate protein-protein interactions, ChIP-seq and gene expression data and to capture essential regulation features behind high-throughput data. The server provides an integrative platform for users to analyze ready-to-use public high-throughput Omics resources or upload their own data for systems biology study. Users can choose various parameters in the method, build network topologies of interests and dissect their associations with biological functions. Application of the software to stem cell and breast cancer demonstrates that it is an effective tool for understanding regulatory mechanisms in biological complex systems. PTHGRN web server is publically available at web site http://www.byanbioinfo.org/pthgrn.published_or_final_versio

    An integrative method to decode regulatory logics in gene transcription

    Get PDF
    Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we introduced an integrative method, LogicTRN, to decode TF-TF interactions that form TF logics in regulating target genes. By combining cis-regulatory logics and transcriptional kinetics into one single model framework, LogicTRN can naturally integrate dynamic gene expression data and TF-DNA binding signals in order to identify the TF logics and to reconstruct the underlying TRNs. We evaluated the newly developed methodology using simulation, comparison and application studies, and the results not only show their consistence with existing knowledge, but also demonstrate its ability to accurately reconstruct TRNs in biological complex systems.published_or_final_versio

    The Impairment of ILK Related Angiogenesis Involved in Cardiac Maladaptation after Infarction

    Get PDF
    Background: Integrin linked kinase (ILK), as an important component of mechanical stretch sensor, can initiate cellular signaling response in the heart when cardiac preload increases. Previous work demonstrated increased ILK expression could induce angiogenesis to improved heart function after MI. However the patholo-physiological role of ILK in cardiac remodeling after MI is not clear. Method and Results: Hearts were induced to cardiac remodeling by infarction and studied in Sprague-Dawley rats. Until 4 weeks after infarction, ILK expression was increased in non-ischemic tissue in parallel with myocytes hypertrophy and compensatory cardiac function. 8 weeks later, when decompensation of heart function occurred, ILK level returned to baseline. Followed ILK alternation, vascular endothelial growth factor (VEGF) expression and phosphorylation of endothelial nitric oxide synthase (eNOS) was significantly decreased 8 weeks after MI. Histology study also showed significantly microvessel decreased and myocytes loss 8 weeks paralleled with ILK down-regualtion. While ILK expression was maintained by gene delivery, tissue angiogenesis and cardiac function was preserved during cardiac remodeling. Conclusion: Temporally up-regulation of ILK level in non-ischemic myocytes by increased external load is associated with beneficial angiogenesis to maintain infarction-induced cardiac hypertrophy. When ILK expression returns to normal, this cardiac adaptive response for infarction is weaken. Understanding the ILK related mechanism of cardiac maladaptatio

    Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic brain injury initiates biochemical processes that lead to secondary neurodegeneration. Imaging studies suggest that tissue loss may continue for months or years after traumatic brain injury in association with chronic microglial activation. Recently we found that metabotropic glutamate receptor 5 (mGluR5) activation by (<it>RS</it>)-2-chloro-5-hydroxyphenylglycine (CHPG) decreases microglial activation and release of associated pro-inflammatory factors <it>in vitro</it>, which is mediated in part through inhibition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Here we examined whether delayed CHPG administration reduces chronic neuroinflammation and associated neurodegeneration after experimental traumatic brain injury in mice.</p> <p>Methods</p> <p>One month after controlled cortical impact traumatic brain injury, C57Bl/6 mice were randomly assigned to treatment with single dose intracerebroventricular CHPG, vehicle or CHPG plus a selective mGluR5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine. Lesion volume, white matter tract integrity and neurological recovery were assessed over the following three months.</p> <p>Results</p> <p>Traumatic brain injury resulted in mGluR5 expression in reactive microglia of the cortex and hippocampus at one month post-injury. Delayed CHPG treatment reduced expression of reactive microglia expressing NADPH oxidase subunits; decreased hippocampal neuronal loss; limited lesion progression, as measured by repeated T2-weighted magnetic resonance imaging (at one, two and three months) and white matter loss, as measured by high field <it>ex vivo </it>diffusion tensor imaging at four months; and significantly improved motor and cognitive recovery in comparison to the other treatment groups.</p> <p>Conclusion</p> <p>Markedly delayed, single dose treatment with CHPG significantly improves functional recovery and limits lesion progression after experimental traumatic brain injury, likely in part through actions at mGluR5 receptors that modulate neuroinflammation.</p

    Generating inner ear organoids containing putative cochlear hair cells from human pluripotent stem cells

    Get PDF
    In view of the prevalence of sensorineural hearing defects in an ageing population, the development of protocols to generate cochlear hair cells and their associated sensory neurons as tools to further our understanding of inner ear development are highly desirable. We report herein a robust protocol for the generation of both vestibular and cochlear hair cells from human pluripotent stem cells which represents an advance over currently available methods that have been reported to generate vestibular hair cells only. Generating otic organoids from human pluripotent stem cells using a three-dimensional culture system, we show formation of both types of sensory hair cells bearing stereociliary bundles with active mechano-sensory ion channels. These cells share many morphological characteristics with their in vivo counterparts during embryonic development of the cochlear and vestibular organs and moreover demonstrate electrophysiological activity detected through single-cell patch clamping. Collectively these data represent an advance in our ability to generate cells of an otic lineage and will be useful for building models of the sensory regions of the cochlea and vestibule

    Lack of association between genetic polymorphisms within DUSP12 - ATF6 locus and glucose metabolism related traits in a Chinese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide linkage studies in multiple ethnic populations found chromosome 1q21-q25 was the strongest and most replicable linkage signal in the human chromosome. Studies in Pima Indian, Caucasians and African Americans identified several SNPs in <it>DUSP12 </it>and <it>ATF6</it>, located in chromosome 1q21-q23, were associated with type 2 diabetes.</p> <p>Methods</p> <p>We selected 19 single nucleotide polymorphisms (SNPs) that could tag 98% of the SNPs with minor allele frequencies over 0.1 within <it>DUSP12-ATF6 </it>region. These SNPs were genotyped in a total of 3,700 Chinese Han subjects comprising 1,892 type 2 diabetes patients and 1,808 controls with normal glucose regulation.</p> <p>Results</p> <p>None of the SNPs and haplotypes showed significant association to type 2 diabetes in our samples. No association between the SNPs and quantitative traits was observed either.</p> <p>Conclusions</p> <p>Our data suggests common SNPs within <it>DUSP12</it>-<it>ATF6 </it>locus may not play a major role in glucose metabolism in the Chinese.</p

    Elevated Fibroblast growth factor 21 (FGF21) in obese, insulin resistant states is normalised by the synthetic retinoid Fenretinide in mice

    Get PDF
    The authors would like to thank undergraduate student Aleksandra Kowalczuk (University of Aberdeen) for assisting in experiments and Dr. Emma K. Lees (School of Health Sciences, Liverpool Hope University, Liverpool, UK) for invaluable discussions concerning the regulation of FGF21. We thank Dr. Calum Sutherland and Dr. Amy Cameron (both Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Scotland, UK) for technical support and expertise in performing hepatocyte studies. Fenretinide was a generous gift of T. Martin (Johnson & Johnson, New Brunswick, NJ) and U. Thumeer (Cilag AG, Schaffhausen, Switzerland), for use completely without restriction or obligation. Quantitative-PCR was carried out using the qPCR Core Facility (Institute of Medical Sciences, University of Aberdeen). RNA-sequencing was carried out at the University of Aberdeen Centre for Genome Enabled Biology and Medicine. Pancreas histology was performed by Dr Linda Davidson (Department of Histology, Aberdeen Royal Infirmary, NHS Grampian, Foresterhill Health Campus, Aberdeen, UK). This study was supported by the British Heart Foundation Intermediate Basic Research Fellowship FS/09/026 to N. Mody, RCUK fellowship to MD, EFSD/Lilly Programme Grant to MD and N. Mody, Tenovus Scotland grants G10/04 and G14/14 to N. Mody, University of Aberdeen Centre for Genome Enabled Biology and Medicine (CGEBM) PhD studentship to N. Morrice and Biotechnology and Biological Sciences Research Council studentship to GDM.Peer reviewedPublisher PD
    corecore